## KETENE-ANTHRACENE ADDUCT, A PRECURSOR OF SUBSTITUTED ACETYLENES

Bongkoch TARNCHOMPOO, Yodhathai THEBTARANONTH,\* and Suchada UTAMAPANYA Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 4, Thailand

Prapani KASEMSRI

Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 5, Thailand

The ketene-anthracene adduct 1 serves as a good precursor in the synthesis of substituted acetylenes, in which the key step is the retro Diels-Alder reaction.

We wish to demonstrate in this communication that the ketene-anthracene adduct 1, 1) a well known candidate for the substituted ketene precursor, 2) can serve as a convenient starting block in the preparation of substituted acetylenes. This method provides an alternative approach to the acetylenic bond, whose construction elimination reactions are usually employed for  $^{3)}$  The synthetic sequence is illustrated in the Scheme.

The ketene adduct  $\underline{1}$  was directly alkylated via its lithium enolate (1.2 eq. of LDA in THF: HMPA = 10:1) to give 2. Conversion of the alkylated adduct 2 to the acetylene precursor 3 could be accomplished via routes A or B. In route A, however, dehydration of the intermediate alcohol (TsOH, boiling benzene) proceeded cleanly only when  $R^2$  = Ar (see Scheme), the reaction being otherwise slow and yielding several minor products which required tedious chromatographic separation. Hence when  $R^2 \neq Ar$ , route B, which employed the Shapiro reaction, was preferred, even though product yields were lower. Thus, 2 was converted nearly quantitatively to 4 by treatment with triisopropylbenzenesulphonyl hydrazide.<sup>5)</sup> Conversion of 4 to the acetylene precursor 3 was effected by a slow introduction of n-BuLi (2.2 eq.) to a solution of 4 in DME (20 ml of DME for 1 mmole of reagent) at  $-78^{\circ}$ , then raising the temperature and keeping it at  $0^{\circ}$  for 3 hr, followed by addition of the corresponding alkyl halide to the intermediate vinyl anion. As predicted, the retro Diels-Alder reaction of 3 offered no difficulty (flash vacuum pyrolysis at 500-550<sup>0</sup>/0.05mm, using 30"x0.5" glass column packed with glass chips and wrapped with heating coil) and the crude pyrolysates were shown to be pure acetylenes (GC., NMR.).<sup>6)</sup>

1. LDA
2. 
$$R^2X$$
in THF:HMPA=10:1

2

R1
R2
R1
R2
Mp°
% of 5
of 3
from 2

1.  $R^2Mg \times$ 
2.  $TsOH/C_6H_6/A$ 
route A

R1
R2
N=Ph
129-130
100
N=Ph
170-2
N=PhCH<sub>2</sub>
N=PhCH

It can be seen by this method that the adduct  $\underline{1}$  is quite versatile and can be employed as either  $-C \equiv C^+$  (route A) or  $-C \equiv C^-$  (route B) equivalents in the synthesis of acetylenes.

## References

- 1) P.F.Hudrlik, A.M.Hudrlik, and C.N.Wan, J.Org. Chem., 40, 1116 (1975).
- 2) H.Hart, D.L.Dean, and D.N.Buchanan, J.Am. Chem. Soc., 95, 6294 (1973); J.L.Ripoll, Tetrahedron Report Number 45, Tetrahedron, 34, 19 (1978).
- 3) For review see "The Chemistry of the Carbon-Carbon Triple Bond", Vol 1 and 2, Saul Patai Ed., John Wiley & Sons, Inc., New York, 1978; for recent report see H.J.Reich and W.W.Willis, Jr., J.Am.Chem.Soc., 102, 5967 (1980).
- 4) R.H.Shapiro, *Organic Reactions*, 23, 405 (1976); for recent application see R.M.Adlington and A.G.M.Barrett, *J.Chem.Soc.*, *Chem.Comm.*, 65 (1981).
- 5) A.R.Chamberlin, J.E.Stemke, and F.T.Bond, J.Org. Chem., 43, 147 (1978).
- 6) We thank Mrs.P.Poochaiwattananon, Mrs.J.Udcharchon, and Miss A.Srisuthtiprut for spectroscopic, MS, and analytical services.

(Received June 1, 1981)